76 research outputs found

    Surface-guided computing to analyze subcellular morphology and membrane-associated signals in 3D

    Full text link
    Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals. Here, we introduce u-Unwrap3D, a framework to remap arbitrarily complex 3D cell surfaces and membrane-associated signals into equivalent lower dimensional representations. The mappings are bidirectional, allowing the application of image processing operations in the data representation best suited for the task and to subsequently present the results in any of the other representations, including the original 3D cell surface. Leveraging this surface-guided computing paradigm, we track segmented surface motifs in 2D to quantify the recruitment of Septin polymers by blebbing events; we quantify actin enrichment in peripheral ruffles; and we measure the speed of ruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D provides access to spatiotemporal analyses of cell biological parameters on unconstrained 3D surface geometries and signals.Comment: 49 pages, 10 figure

    Magnetic ground state of FeSe

    Full text link
    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit N\'eel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts = 90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here, we report inelastic neutron-scattering experiments that reveal both stripe and N\'eel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the N\'eel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ~ 60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S = 1 nematic quantum-disordered paramagnet interpolating between the N\'eel and stripe magnetic instabilities.Comment: Supplementary information included; accepted by Nature Communication

    Strong Interplay between Stripe Spin Fluctuations, Nematicity and Superconductivity in FeSe

    Full text link
    Elucidating the microscopic origin of nematic order in iron-based superconducting materials is important because the interactions that drive nematic order may also mediate the Cooper pairing. Nematic order breaks fourfold rotational symmetry in the iron plane, which is believed to be driven by either orbital or spin degrees of freedom. However, as the nematic phase often develops at a temperature just above or coincides with a stripe magnetic phase transition, experimentally determining the dominant driving force of nematic order is difficult. Here, we use neutron scattering to study structurally the simplest iron-based superconductor FeSe, which displays a nematic (orthorhombic) phase transition at Ts=90T_s=90 K, but does not order antiferromagnetically. Our data reveal substantial stripe spin fluctuations, which are coupled with orthorhombicity and are enhanced abruptly on cooling to below TsT_s. Moreover, a sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron boson coupling mode revealed by scanning tunneling spectroscopy, thereby suggesting a spin fluctuation-mediated sign-changing pairing symmetry. By normalizing the dynamic susceptibility into absolute units, we show that the magnetic spectral weight in FeSe is comparable to that of the iron arsenides. Our findings support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.Comment: 19 pages, 8 figure

    Comparative safety of different recommended doses of sodium–glucose cotransporter 2 inhibitors in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis of randomized clinical trials

    Get PDF
    ObjectiveThe safety results of different recommended doses of sodium-glucose cotransporter 2 inhibitors (SGLT-2i) for patients with type 2 diabetes mellitus (T2DM) remain uncertain. This study aims to comprehensively estimate and rank the relative safety outcomes with different doses of SGLT-2i for T2DM.MethodsPubMed, Embase, the Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, Chinese National Knowledge Infrastructure, WanFang database, and SinoMed database were searched from the inception to 31 May 2023. We included double-blind randomized controlled trials (RCTs) comparing SGLT-2i with placebo or another antihyperglycemic as oral monotherapy in the adults with a diagnosis of T2DM.ResultsTwenty-five RCTs with 12,990 patients randomly assigned to 10 pharmacological interventions and placebo were included. Regarding genital infections (GI), all SGLT-2i, except for ertugliflozin and ipragliflozin, were associated with a higher risk of GI compared to placebo. Empagliflozin 10mg/d (88.2%, odds ratio [OR] 7.90, 95% credible interval [CrI] 3.39 to 22.08) may be the riskiest, followed by empagliflozin 25mg/d (83.4%, OR 7.22, 95%CrI 3.11 to 20.04)) and canagliflozin 300mg/d (70.8%, OR 5.33, 95%CrI 2.25 to 13.83) based on probability rankings. Additionally, dapagliflozin 10mg/d ranked highest for urinary tract infections (UTI, OR 2.11, 95%CrI 1.20 to 3.79, 87.2%), renal impairment (80.7%), and nasopharyngitis (81.6%) when compared to placebo and other treatments. No increased risk of harm was observed with different doses of SGLT-2i regarding hypoglycemia, acute kidney injury, diabetic ketoacidosis, or fracture. Further subgroup analysis by gender revealed no significantly increased risk of UTI. Dapagliflozin 10mg/d (91.9%) and canagliflozin 300mg/d (88.8%) ranked first in the female and male subgroups, respectively, according to the probability rankings for GI.ConclusionCurrent evidence indicated that SGLT-2i did not significantly increase the risk of harm when comparing different doses, except for dapagliflozin 10mg/d, which showed an increased risk of UTI and may be associated with a higher risk of renal impairment and nasopharyngitis. Additionally, compared with placebo and metformin, the risk of GI was notably elevated for empagliflozin 10mg/d, canagliflozin 300mg/d, and dapagliflozin 10mg/d. However, it is important to note that further well-designed RCTs with larger sample sizes are necessary to verify and optimize the current body of evidence.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023396023

    HDAC3 maintains oocyte meiosis arrest by repressing amphiregulin expression before the LH surge.

    Get PDF
    It is known that granulosa cells (GCs) mediate gonadotropin-induced oocyte meiosis resumption by releasing EGF-like factors in mammals, however, the detailed molecular mechanisms remain unclear. Here, we demonstrate that luteinizing hormone (LH) surge-induced histone deacetylase 3 (HDAC3) downregulation in GCs is essential for oocyte maturation. Before the LH surge, HDAC3 is highly expressed in GCs. Transcription factors, such as FOXO1, mediate recruitment of HDAC3 to the amphiregulin (Areg) promoter, which suppresses AREG expression. With the LH surge, decreased HDAC3 in GCs enables histone H3K14 acetylation and binding of the SP1 transcription factor to the Areg promoter to initiate AREG transcription and oocyte maturation. Conditional knockout of Hdac3 in granulosa cells in vivo or inhibition of HDAC3 activity in vitro promotes the maturation of oocytes independent of LH. Taking together, HDAC3 in GCs within ovarian follicles acts as a negative regulator of EGF-like growth factor expression before the LH surge
    corecore